Brown Dwarf Discovery Could Lead To Better Model

Stellar and planetary formation is a very active field, full of uncertainty on how these objects form. Theres a lot of focus on brown dwarfs, a class of failed stars, and a new discovery might help consolidate our understanding of these objects.

A team led by Justin Crepp was able to constrain themass, age and composition of the brown dwarf HD 4747 B,as well as photographit for the first time. These breakthrough measurements can be used as a benchmark to better understandthese types of objects in the future.

The preliminary results indicate that the object has a mass of about 60 Jupiters and an age of 3.3 billionyears. Its in a very eccentric orbit around its companion star andlocated 61 light-years from Earth. The results have been submitted for publication in the Astrophysical Journal and are available online.

Brown dwarfs are a stellar missing linkobjects between stars and exoplanets. They start off as stars, shining brightly due to the gravitational collapse, but then dont have enough mass to ignite nuclear fusion in their core, so they eventually cool off. Thislimited brightness makes them difficult objects to study.

HD 4747 B as seen byKeck telescopes in Hawaii. Crepp et al.

The precise measurements of HD 4747 B were possible thanks to 18 years of detailed measurements of its companion star, HD 4747 A, a yellow star slightly small than our Sun (0.82 solar masses). This presented astronomers with a unique opportunity.

“We suspect that these companions form at the same time and from the same material,” Crepp said in a statement.”As such, you can infer physical properties of the brown dwarf from its parent star, like age and composition. There are no other objects for which we know the mass, age and the metallicity simultaneously and also independent of the light that the companion gives off. We can therefore use HD 4747 B as a test-bed to study brown dwarfs, enabling precision astrophysics studies for a directly imaged substellar object.”

Brown dwarf masses are usually estimated by comparing the light of an observed object with theoretical evolutionary models. Theprecision of thiscurrent workwill likely help to improvethe predictions of models when next applied to other objects.

“This field is transitioning from ‘Hey, I found something neat’ to ‘Hey, I know the mass to within a few percent.’ Now, we can test theoretical models,” concluded Crepp.

Photo Gallery

Source: Array

Wonder Of Science


Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s